
94-775 Unstructured Data Analytics

Nearly all slides by George H. Chen
with one slide by Phillip Isola

Lecture 12: Wrap up neural net basics; brief
overview of word embeddings; image analysis

with convolutional neural nets

Outline
Last few lectures teach fundamental concepts underlying some state-
of-the-art technologies currently used in unstructured data analysis

• High-level idea of word embeddings

You’ll see some practical examples in tomorrow’s recitation!

Next week I’ll give a little bit more intuition for these in our
coverage of transformers (for handling time series)

• Analyzing images using convolutional neural nets (CNNs)

• Next week:
wrap up CNNs (if we don’t finish talking about them today),
text generation using generative pretrained transformers

• Wrap up neural net & deep learning basics

• Today:

Handwritten Digit Recognition

Demo

A brief glimpse at word embeddings

“learn”

“study”

“car”

We used spaCy/CountVectorizer/
TfidfVectorizer

PCA
(e.g., 100-dim)

Either TF
or TF-IDF

vector

Either TF
or TF-IDF

vector

Either TF
or TF-IDF

vector

100-dim
PCA vector

100-dim
PCA vector

100-dim
PCA vector

“learn”

“study”

“car”

word embedding<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

<latexit sha1_base64="/K2XKbqP78k6YM4sbcHgZptZAfU=">AAAB7XicbVA9SwNBEJ2LXzF+RS1tDoNgFe5EooVFwMYygvmA5Ah7e3vJmr3dY3dOCCH/wcZCEVv/j53/xk1yhSY+GHi8N8PMvDAV3KDnfTuFtfWNza3idmlnd2//oHx41DIq05Q1qRJKd0JimOCSNZGjYJ1UM5KEgrXD0e3Mbz8xbbiSDzhOWZCQgeQxpwSt1OrRSKHplyte1ZvDXSV+TiqQo9Evf/UiRbOESaSCGNP1vRSDCdHIqWDTUi8zLCV0RAasa6kkCTPBZH7t1D2zSuTGStuS6M7V3xMTkhgzTkLbmRAcmmVvJv7ndTOMr4MJl2mGTNLFojgTLip39robcc0oirElhGpub3XpkGhC0QZUsiH4yy+vktZF1a9Va/eXlfpNHkcRTuAUzsGHK6jDHTSgCRQe4Rle4c1Rzovz7nwsWgtOPnMMf+B8/gCwG480</latexit>· · ·

Tokens/words

word embedding

word embedding

Neural net model

(Flashback) Do Data Actually Live on
Manifolds?

Image source: http://www.adityathakker.com/wp-content/uploads/2017/06/word-
embeddings-994x675.png

Word Embeddings:
Even without labels, we can set up

a prediction problem!

Hide part of training data and try to predict what you’ve hid!

Word Embeddings: word2vec (2013)

Can solve tasks like the following:

Man is to King as Woman is to Queen???

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Man is to King as Woman is to Queen

Which word doesn’t belong?
blue, red, green, crimson, transparent

Can solve tasks like the following:

Word Embeddings: word2vec (2013)

Image source: https://deeplearning4j.org/img/countries_capitals.png

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point:

“Training labels”:

epidemic

the, opioid, or, opioid

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: or

“Training labels”: opioid, epidemic, opioid, crisis

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Training labels”: epidemic, or, crisis, is

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

These are “positive” (correct)
examples of what context

words are for “opioid”

Word Embeddings: word2vec (2013)

The opioid epidemic or opioid crisis is the rapid increase in the use of
prescription and non-prescription opioid drugs in the United States and
Canada in the 2010s.

Predict context of each word!

Training data point: opioid

“Negative training label”: 2010s

Also provide “negative” examples of words that are not likely to be context
words (by randomly sampling words elsewhere in document)

randomly sampled word

Word2vec Neural Net

Linear
(# nodes = vocab size),

Softmax

Linear, no bias vector
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Want real context
words (e.g.,
“epidemic”, “crisis”)
to have high
probability

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

Word2vec Neural Net

Linear, no bias vector
(100 nodes)

“opioid”

[0, 0, …, 1, …, 0]
Use one-hot encoding

vector length = vocab size

index of “opioid” in vocab

Learned weight matrix used
as word embedding!

(Treat i-th col of weight matrix as word embedding for i-th word)

After training the word2vec
model, treat this layer as fixed!

In PyTorch, can store already
trained word2vec model (and

other similar models like GloVe)
in the Embedding layer

Em
be

dd
in

g

“pen”

“cat”

“health”

Tokens/words

word embedding

word embedding

word embedding

word2vec

Em
be

dd
in

g
Em

be
dd

in
g

Em
be

dd
in

g

“pen”

Tokens/words

word embedding

word2vec

Em
be

dd
in

g

Even though “pen” has multiple meanings
(e.g., what you write with vs a play pen),

word2vec would produce the same word embedding for “pen”

What about a word that has
multiple meanings?

Challenging: try to split up word into
multiple words depending on meaning

(requires inferring meaning from context)

This problem is called word sense disambiguation (WSD)

(Flashback)

Modern Word Embeddings Use Context

“I”

“write”

“using”

“a”

“pen”

word embedding

word embedding

word embedding

word embedding

word embedding

More complicated
neural net

(such as BERT, which came out in 2018)

You provide a
whole sentence

(or a longer
document)

We’ll talk about this sort
of idea more next week

Recitation tomorrow goes over
how to use this technology!

Accounting for image structure:
convolutional neural nets

(CNNs or convnets)

filter

Slide by Phillip Isola

Convolution

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

-1 -1 -1

2 2 2

-1 -1 -1

Filter
(also called “kernel”)

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Filter
(also called “kernel”)

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Take dot product!

0

Output image

-1 -1 -1

2 2 2

-1 -1 -1

0(-1) + 0(-1) + 0(-1) + 0(2) + 0(2) + 1(2) + 0(-1) + 1(-1) + 1(-1)

= 2 - 1 - 1 = 0

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1

Output image

Take dot product!

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3

Output image

Take dot product!

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1

Output image

Take dot product!

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Take dot product!

0 1 3 1 0

Output image

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1

Output image

Take dot product!

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

0 1 3 1 0

1 1

Output image

Take dot product!

-1 -1 -1

2 2 2

-1 -1 -1

0 1 3 1 0

1 1 1 3 3

0 0 -2 -4 -4

1 1 1 3 3

0 1 3 1 0

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image Output image

∗ =

Note: output image is smaller than input image

-1 -1 -1

2 2 2

-1 -1 -1

Convolution

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

3 5 6 5 3

5 8 8 6 3

6 9 8 7 4

5 8 8 6 3

3 5 6 5 3

Output image

1 1 1

1 1 1

1 1 1

∗ =1
9

1
9

Convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

∗ =

Very commonly used for:

• Blurring an image

• Finding edges

-1 -1 -1

2 2 2

-1 -1 -1

∗ =

(this example finds horizontal edges)

Images from: http://aishack.in/tutorials/image-convolution-examples/

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

convolve with
each filter

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

-1 -1 -1

2 2 2

-1 -1 -1

0 -1 0

-1 4 -1

0 -1 0

filters & biases (1 bias number per filter)
are unknown and are learned!

add bias

add bias

add bias

apply
activation

apply
activation

apply
activation

Conv2d
layer

Activation layer
(such as ReLU)

42

-17

99

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(3 kernels,

each size 3x3),
ReLU activation

Input

Output images

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(3 kernels,

each size 3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

shape:
3,

height-2,
width-2

shape:
1 (# channels),

height,
width

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(m kernels

each size 3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

shape:
1 (# channels),

height,
width

shape:
m,

height-2,
width-2

Convolution Layer

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(m kernels

each size dx3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

shape:
d (# channels)

height,
width

shape:
m,

height-2,
width-2

Convolution Layer

Conv2d
(m kernels

each size dx3x3),
ReLU activation

Input

Stack output
images into a
single “output
feature map”

shape:
d (# channels)

height,
width

shape:
m,

height-2,
width-2

∗}

d

}

d

image width
image height

Each filter:

Pooling

• To produce this smaller image, need to aggregate or “pool”
together information

• Produces smaller image summarizing original larger image

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

1

Output image

Take maximum value

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Max Pooling

0 0 0 0 0 0 0

0 0 1 1 1 0 0

0 1 1 1 1 1 0

0 1 1 1 0 0 0

0 1 1 1 1 1 0

0 0 1 1 1 0 0

0 0 0 0 0 0 0

Input image

Called “2-by-2” max pooling since this green box is 2 rows by 2 columns

0 1 1

1 1 1

1 1 1

Output image

3-by-4 max pooling would mean that the green box is 3 rows by 4 columns, etc

Common Building Block of CNNs

Images from: http://aishack.in/tutorials/image-convolution-examples/

Conv2d
(k kernels),

ReLU activation

Input

Max Pool 2d
(applied to each
image in stack)

stack of images

output stack of
smaller images

Input

Handwritten Digit Recognition

Flatten Linear
(512 nodes),

ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Input

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Loss error

Linear
(10 nodes),

Softmax

Categorical
cross entropy

Max
Pool
2d

Flatten

Handwritten Digit Recognition

Conv2d,
ReLU

Training label: 6

Max
Pool
2d

Conv2d,
ReLU

Input
Linear

(10 nodes),
Softmax

FlattenMax
Pool
2d

errorLoss

Categorical
cross entropy

extract low-level visual
features & aggregate

extract higher-level visual
features & aggregate

non-vision-specific classifier

CNNs

Demo

